

Home

Search Collections Journals About Contact us My IOPscience

Magnetic properties of Dy^{3+} ions and crystal field characterization in YF_3 : Dy^{3+} and DyF_3 single crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys.: Condens. Matter 20 485220 (http://iopscience.iop.org/0953-8984/20/48/485220) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 29/05/2010 at 16:43

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 20 (2008) 485220 (7pp)

Magnetic properties of Dy³⁺ ions and crystal field characterization in YF₃:Dy³⁺ and DyF₃ single crystals

A V Savinkov^{1,2}, S L Korableva¹, A A Rodionov¹, I N Kurkin¹, B Z Malkin¹, M S Tagirov¹, H Suzuki², K Matsumoto² and S Abe²

¹ Kazan State University, 420008 Kazan, Russia

² Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Japan

E-mail: boris.malkin@ksu.ru

Received 29 June 2008, in final form 4 August 2008 Published 28 October 2008 Online at stacks.iop.org/JPhysCM/20/485220

Abstract

The dc magnetic susceptibilities of the orthorhombic DyF_3 single crystals have been measured in the temperature range between 1.8 and 300 K. The susceptibility along the *b*-axis does not depend on temperature below $T_C = 2.55$ K and is equal to the demagnetizing factor of the sample, that gives evidence for the ferromagnetic phase induced by the magnetic dipole–dipole interactions between the Dy^{3+} ions. The saturation moment of 8.5 μ_B/Dy^{3+} along the *b*-axis was determined from magnetization measurements. The observed strong anisotropy of the magnetic susceptibility at low temperatures agrees with the measured anisotropic *g*-tensor of the ground state of impurity Dy^{3+} ions in YF₃ single crystals. The results of measurements are interpreted in the frameworks of the crystal field theory and the mean magnetic field approximation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The heavy-rare-earth trifluorides, from SmF₃ to LuF₃, which belong to the orthorhombic space group Pnma (D_{2h}¹⁶) [1], show a variety of magnetic behavior and attract interest as model systems for theoretical studies of magnetic ordering in rare earth insulators with competing dipole and exchange interactions. These crystals may be also suitable as potential solid-state laser materials and scintillators. Optical spectra of RF₃ and rare earth doped YF₃: R^{3+} crystals (R = Eu, Tb, Dy, Ho, Er, and Yb) have been measured in [2-6]. Magnetic properties of the heavy-rare-earth trifluorides have been the subject of several studies in the past as well. The ferromagnetic ordering was found from magnetization and specific heat measurements in TbF₃ ($T_C = 3.95$ K [7, 8]) and DyF₃ ($T_C =$ 2.53 K [9]). The ground state of the Tb^{3+} ions in TbF_3 is a quasi-doublet with small zero field splitting of $\sim 0.4 \text{ cm}^{-1}$ [4]; at low temperatures $(T < T_{\rm C})$ magnetic moments of the Tb³⁺ ions (~9 in units of the Bohr magneton $\mu_{\rm B}$) in the two magnetically non-equivalent sublattices are ordered in the a-c

plane at angles $\varphi = \pm 27^{\circ}$ to the *a*-axis [8]. Due to large values of the magnetic moments, the magnetic ordering is induced mainly by classical dipole-dipole interactions between the terbium ions. Despite a much larger energy gap (6.6 cm^{-1}) between the two lowest crystal field singlet states of the Ho³⁺ ions in HoF₃, the ordered state of the Ho³⁺ magnetic moments (5.7 $\mu_{\rm B}$) with similar structure (canted ferromagnet, φ = $\pm 24^{\circ}$) was found in HoF₃ ($T_{\rm C} = 0.53$ K) [10–12]. The antiferromagnetic phase with the magnetic moment of 6.6 $\mu_{\rm B}$ per Er^{3+} ion, lying within the *a*-*c* plane under an angle of 60° from the *a*-axis, was found from the neutron diffraction study in ErF₃ ($T_{\rm N} = 1.05$ K) [13]. Low temperature magnetic properties of DyF₃ have not been described in the literature; however, the Curie temperature and the direction (b-axis) and the value of the spontaneous magnetization (8.4 $\mu_{\rm B}$ per ion) have been communicated [9, 14].

In the present study temperature dependences of the principal values of the magnetic susceptibility tensor in DyF_3 were obtained from measurements of the magnetization in weak external magnetic fields. The ordered state was found

Figure 1. Measured (symbols) and calculated (solid curves, spherical sample) temperature dependences of the static magnetic susceptibility in the magnetic field $\mathbf{B} \parallel b$. Low temperature data for two samples of different shapes (open circles—spherical sample, filled circles—hemispherical sample) are given in the inset.

at temperatures below $T_{\rm C}$ = 2.55 K. For the magnetic field directed along the *b*-axis, at temperatures $T < T_{\rm C}$, the susceptibility is determined by the demagnetizing factor of a sample. Such a behavior of the susceptibility gives evidence for the ferromagnetic state induced by the magnetic dipole-dipole interactions between the Dy³⁺ ions. Additional information on the magnetic properties of the Dy³⁺ ions was obtained from low temperature EPR studies of the diluted paramagnet YF₃:Dy³⁺. The measured components of the g-tensor in the ground state of the Dy^{3+} ions and variations of the magnetization in DyF₃ with temperature, magnetic field strength and direction are described in the framework of the crystal field theory. The magnetic dipolar and exchange interactions between the Dy³⁺ ions are considered within the mean-field approximation. Crystal field parameters for concentrated DyF₃ and highly diluted (single ion) YF₃:Dy³⁺ magnets were estimated by making use of the semi-phenomenological exchange charge model [15] and then corrected by comparing the results of calculations with the experimental data.

Computations of crystal field parameters and dipolar magnetic fields were carried out utilizing parameters of the lattice structure obtained from the x-ray diffraction study of the DyF₃ powder at room temperature. The unit cell contains four formula units. Basis vectors \mathbf{r}_i of \mathbf{R}^{3+} ions in 4c positions with the point symmetry \mathbf{C}_s are (in units of the lattice constants a = 0.6456, b = 0.6909, $c = 0.4380 (\pm 10^{-4})$ nm) $\mathbf{r}_1 = -\mathbf{r}_2 = (u, 1/4, v)$, $\mathbf{r}_3 = -\mathbf{r}_4 = (u - 1/2, 1/4, 1/2 - v)$, the Cartesian coordinates of fluorine F1 ions in 4c positions are determined by parameters u_1 and v_1 , and the coordinates of fluorine F2 ions in 8d positions are $\pm(u_2, s_2, v_2)$, $\pm(u_2, 1/2 - s_2, 1/2 - v_2)$, $\pm(u_2 - 1/2, s_2, 1/2 - v_2)$, $\pm(u_2 - 1/2, 1/2 - s_2, v_1 - v_2)$, where u = 0.368, v = 0.0605, $u_1 = 0.525$, $v_1 = 0.584$, $u_2 = 0.165$, $s_2 = 0.066$, $v_2 = 0.384$. These structural parameters agree with literature data [13] (ErF₃),

Figure 2. Measured (symbols) and calculated (dotted and solid curves) temperature dependences of susceptibilities in the *ac*-plane (φ is the angle between the magnetic field and the *c*-axis). The low temperature region is enlarged in the inset, where the solid curves represent the results of calculations with the temperature dependent crystal field parameters for $T < T_{\rm C}$.

[16] (SmF₃, YbF₃) and [17] (TbF₃, HoF₃). Rare earth ions are coordinated by nine fluorine ions: eight ions are at the distances of ~0.23 nm, and one ion is at the distance of ~0.25 nm. The minimal distance between the Dy³⁺ ions equals $r(Dy_1 - Dy_3) = r(Dy_2 - Dy_4) = 0.363$ nm (two neighbors), whereas the next two neighbor Dy³⁺ ions are at the distance of $r(Dy_1 - Dy_2) = r(Dy_3 - Dy_4) = 0.389$ nm.

2. Experimental data

The DyF₃ and YF₃:Dy (0.15 at.%) single crystals were grown by the Bridgman–Stockbarger method in carbon crucibles in an atmosphere of high purity argon from DyF₃ (YF₃) powder at the melting temperature of 1400 °C under an elevated pressure of 200 g cm⁻². Additionally, the atmosphere was fluorinated by burning tetra-fluorine-ethylene. A dc-SQUID magnetometer MPMS (Quantum Design) was used for measurements of the magnetization. The axes of the samples were determined using the x-ray technique with an accuracy of $\pm 3^{\circ}$.

We have measured the magnetization $\mathbf{M}(\mathbf{B})$ in the DyF₃ samples at temperatures 1.8–300 K in magnetic fields *B* from 0.1 up to 55 kOe. The temperature dependences of the susceptibilities evaluated from slopes of magnetization curves in the field B = 100 Oe for the spherical sample (with approximately 2.1 mm diameter) are shown in figures 1 and 2.

The results of our measurements at temperatures in the range of 80–300 K agree with the data presented in [14]. The principal values of the susceptibility tensor satisfy the inequality $\chi_b > \chi_a > \chi_c$. At low temperatures, the susceptibility becomes extremely anisotropic, being very small in the directions perpendicular to the easy *b*-axis; in particular, $\chi_b:\chi_a:\chi_c \approx 56:3.6:1$ at the temperature T = 4.2 K. The measured angular dependence of the susceptibility χ_{\perp} in the *ac*-plane at the temperature of 5 K is presented in figure 3. The

Figure 3. Measured (symbols) and calculated (solid curve) angular dependences of the susceptibility in the *ac*-plane at the temperature of 5 K.

temperature variations of the susceptibilities change abruptly at the temperature $T_{\rm C} = 2.55$ K. Below this temperature, the χ_b susceptibility remains constant, that is a characteristic feature of a dipolar ferromagnet containing domains with zero demagnetizing field. In this case the value of the susceptibility per unit sample mass $\chi_b = (\rho N_b)^{-1}$ at $T < T_C$ along the easy axis is determined by the corresponding demagnetizing factor N_b of the sample (ρ is the mass density) because domains rearrange in the external field B in such a way that the resulting demagnetization field MN_b (here M is the magnetic moment per unit sample volume induced by the external field) compensates exactly the external field. In particular, the measured demagnetizing factor of our spherical sample differs from the demagnetizing factor $4\pi/3$ of the perfect sphere by 2.5% only. The dependence of the susceptibility in the ordered phase on the demagnetizing factor was additionally confirmed by studies of samples with different shapes (see the inset in figure 1).

The χ_c susceptibility exhibits a nonmonotonic temperature dependence (see figure 2). It has a broad maximum at $T \sim 30$ K and a sharp peak at $T_{\rm C}$. The temperature behavior of the susceptibility in the *ac*-plane also changes below $T_{\rm C}$ (see the inset in figure 2); the temperature derivative of the susceptibility χ_{\perp} changes continuously from positive to negative values at $T < T_{\rm C}$ when rotating the magnetic field from the *c*-axis to the *a*-axis.

The magnetic field dependence of the magnetization of the spherical DyF₃ sample along the *b*-axis was measured at temperatures of 2.7, 5, 25 and 100 K (see figure 4). At temperatures close to $T_{\rm C}$, the magnetization saturates to $8.5(1) \mu_{\rm B}$ per Dy³⁺ ion in applied magnetic fields exceeding ~12 kOe.

Additional information about magnetic properties of the Dy^{3+} ions in trifluorides was obtained from EPR measurements in the $YF_3:Dy^{3+}$ single crystal. The EPR spectra were taken at the frequency of 9.4 GHz and

Figure 4. Measured (symbols) and calculated (solid curves) field dependences of the magnetization at different temperatures in magnetic fields $\mathbf{B} \parallel b$.

Table 1. Components of the *g*-tensor in the ground state of the Dy^{3+} ions.

	YF ₃ :	DyF ₃		
	Measured	Calculated	Calculated	
1	2	3	4	
<i>g</i> _a	1.835	1.838	1.002	
g_{ac}	0.946	0.894	0.671	
g_c	0.550	0.556	0.643	
g_b	16.1	16.4	16.25	

temperatures 5-15 K in constant magnetic fields in the range of 0.05–15 kOe by the continuous wave method with a Bruker ESP-300 X-band EPR spectrometer. Along with strong EPR lines from Dy isotopes with the nuclear spin I = 0, rather weak EPR lines with typical hyperfine structure from the ¹⁶¹Dy and ¹⁶³Dy isotopes (nuclear spin I = 5/2) were observed as well (see figure 5). The EPR signals are not observed at temperatures T > 50 K due to strong line broadening. For an arbitrary orientation of the field **B**, two resonance lines are observed corresponding to the Dy³⁺ ions in magnetically non-equivalent positions. In the magnetic field directed along the *b*-axis, the EPR spectrum contains a single line corresponding to the g-factor $g_b = 16.1$ (see figure 5(a)). For the magnetic field oriented in the *ac*-plane (an example of the spectrum is shown in figure 5(b)), the resonance values of the field strength depend on g-factors g_a and g_c and the parameter g_{ac} which is determined below. The values of these parameters (see table 1, column 2) have been obtained from the analysis of the angular dependences of the effective g-factors of the magnetically non-equivalent ions, which are shown in figure 6.

Thus, due to a large difference between the *g*-factors g_b and g_a , g_c in the ground state of impurity Dy³⁺ ions in YF₃, the concentrated system, DyF₃, may be considered to be an Ising magnet with the easy magnetization direction along the *b*-axis.

Figure 5. The EPR signals in $YF_3:Dy^{3+}$ at the temperature 15 K in the magnetic fields **B** || *b* (a) and **B** \perp *b* (b).

3. Discussion

To describe the results of magnetic and spectral measurements, we consider the effective Hamiltonian of a single Dy^{3+} ion in the *j*-sublattice, operating in the total basis of 2002 wavefunctions of the electronic $4f^9$ configuration, in the external magnetic field **B**:

$$H_j = H_0 + H_{\text{CF},j} - \boldsymbol{\mu} \mathbf{B}_{\text{loc},j}.$$
 (1)

Here H_0 is the free ion Hamiltonian with parameters of electrostatic and spin-orbit interactions presented in [18]; $\mu = \mu_B \sum_i (\mathbf{l}_i + 2\mathbf{s}_i)$ is the magnetic moment operator of an ion (the sum is taken over 4f electrons with the orbital **l** and spin **s** moments). The crystal field Hamiltonians

$$H_{\text{CF},j} = \sum_{p=2,4,6} \left[B_p^0(j) C_0^{(p)} + \sum_{k=1:p} B_p^k(j) (C_k^{(p)} + (-1)^k C_{-k}^{(p)}) \right],$$
(2)

where $C_k^{(p)}$ are the spherical tensor operators, are determined by a single set of 15 real crystal field parameters (CFPs) $B_p^k(1)$ (we use the Cartesian system of coordinates with the axes x, y, z parallel to the crystallographic axes—c, b, a, respectively, and $B_p^k(1) = B_p^k(2) = (-1)^k B_p^k(3) = (-1)^k B_p^k(4)$; the Dy³⁺ ions in the sublattices 1 and 2, 3 and 4 are magnetically equivalent in pairs). A local magnetic field at the Dy³⁺ ions in sublattice j

$$B_{\text{loc},j\alpha} = B_{\alpha} + \sum_{i\beta} K_{j\alpha,i\beta} m_{i\beta}$$
(3)

(here **m**_{*i*} is the average magnetic moment of an ion in the sublattice *i*) is determined by the matrix $K_{i\alpha,j\beta} = Q_{\alpha\beta}(i, j) + J_{\alpha\beta}(i, j) - N_{\alpha\beta}/V$, where $Q_{\alpha\beta}(i, j)$ are the dipolar lattice sums

$$Q_{\alpha\beta}(i, j) = \sum_{L} \frac{1}{R(0i, Lj)^5} [3R(0i, Lj)_{\alpha} R(0i, Lj)_{\beta} - \delta_{\alpha\beta} R(0i, Lj)^2]$$
(4)

150

Figure 6. Angular dependences of the effective *g*-factors in the *ac*-plane (symbols correspond to the experimental data; the results of calculations are presented by solid curves).

100

 ϕ (degree)

50

2.1

1.8

1.5

1.2 5 0.9

0.6

0.3

0.0

0

Table 2. Parameters of the dipole–dipole interaction in units of $4\pi/3V$ ($Q_{yz}(i, j) = 0$, $Q_{xy}(i, j) = 0$).

i	j	$Q_{xx}(i, j)$	$Q_{yy}(i,j)$	$Q_{zz}(i, j)$	$Q_{xz}(i, j)$
1	1	2.659 55	0.037 04	0.303 40	0
1	2	-0.27641	3.03043	0.245 98	0.113 35
1	3	0.70230	-1.92293	4.22064	0
1	4	0.41907	2.627 54	-0.04660	0

(the vector $\mathbf{R}(0i, Lj)$ connects the Dy^{3+} ions belonging to the sublattices *i* and *j* in the unit cells 0 and *L*), $J_{\alpha\beta}(i, j)$ are the exchange field parameters, $N_{\alpha\beta}$ are the demagnetizing factors, and *V* is the unit cell volume. The lattice sums have been computed by the Ewald method and are presented in table 2. To fit the Curie temperature within the meanfield approximation (see below), we introduce the isotropic exchange interaction, $H_{\text{exch}} = -J_{\text{ex}}\mathbf{S}_1\mathbf{S}_2$, between the nearest neighbor Dy³⁺ ions with the spin moments \mathbf{S}_i (*i* = 1, 2), and $J_{\alpha\beta}(1, 3) = J_{\alpha\beta}(2, 4) = 2(\frac{g_J-1}{\mu_{\text{B}gJ}})^2 J_{\text{ex}}\delta_{\alpha\beta}$, where $g_J = 4/3$ is the L andé factor for the ground ⁶M are multiplat

the Landé factor for the ground ${}^{6}H_{15/2}$ multiplet.

The average magnetic moments satisfy the self-consistent equations

$$\mathbf{m}_{j} = \mathrm{Tr}[\mu \exp(-H_{j}(\mathbf{m})/k_{\mathrm{B}}T)]/\mathrm{Tr}[\exp(-H_{j}(\mathbf{m})/k_{\mathrm{B}}T)]$$
(5)

($k_{\rm B}$ is the Boltzmann constant) and are determined in weak magnetic fields by the single ion susceptibility tensors $\chi^{\rm s}(j)$:

$$m_{j\alpha} = \sum_{\beta} \chi^{s}_{\alpha\beta}(j) B_{\text{loc},j\beta}$$
$$= \sum_{\beta} \chi^{s}_{\alpha\beta}(j) \left(B_{\beta} + \sum_{j\gamma} K_{j\beta,i\gamma} m_{i\gamma} \right).$$
(6)

For a given set of CFPs, we calculate components of $\chi^{s}(j)$ by making use of numerical diagonalization of the Hamiltonian (1). Diagonal components of the single ion susceptibility tensors are the same for all sublattices, $\chi^{s}_{xy}(j) = \chi^{s}_{yz}(j) =$ 0, and $\chi^{s}_{xz}(1) = \chi^{s}_{xz}(2) = -\chi^{s}_{xz}(3) = -\chi^{s}_{xz}(4)$. From

200

equation (6), we obtain the following expression for the bulk susceptibilities:

$$\chi_{\alpha\alpha} = \sum_{ij\beta} X_{\alpha\beta}^{-1}(ij) \chi_{\beta\alpha}^{s}(j),$$

$$X_{\alpha\beta}(ij) = \delta_{\alpha\beta}\delta_{ij} - \sum_{\gamma} \chi_{\alpha\gamma}^{s}(i) K_{i\gamma,j\beta}.$$
(7)

In contrast to the single ion susceptibility, the principal axes of the bulk susceptibility tensor coincide with the crystallographic axes. In the magnetic field $\mathbf{B} \parallel y$, all Dy^{3+} ions have the same magnetic moments. The corresponding susceptibility of the spherical sample in the paramagnetic phase is given by

$$\chi_b(T > T_{\rm C}) = \chi_{yy}^{\rm s}(1) \\ \times \left[1 - \left(\sum_{i=1}^4 \mathcal{Q}_{yy}(1,i) + J_{\rm ex}/8\mu_{\rm B}^2 - 16\pi/3V \right) \chi_{yy}^{\rm s}(1) \right]^{-1}.$$
(8)

Explicit expressions for χ_a and χ_c can be easily obtained from equations (7) (for **B** || *x* or **B** || *z*, there are only two independent variables in equation (6), $m_{1x} = m_{3x}$, $m_{1z} = -m_{3z}$, or $m_{1x} = -m_{3x}$, $m_{1z} = m_{3z}$, respectively).

In the ordered ferromagnetic phase, the crystal contains domains with zero demagnetizing factors. The Curie temperature $T_{\rm C}$ satisfies the following equation, which can be easily obtained from equation (5) for the spontaneous magnetization in such a domain:

$$\left(\sum_{i=1}^{4} Q_{yy}(1,i) + J_{\text{ex}}/8\mu_{\text{B}}^{2}\right) \chi_{yy}^{\text{s}}(1,T_{\text{C}}) = 1.$$
(9)

We obtain $\chi_b(T_{\rm C}) = 3V/16\pi$ from equations (8) and (9), and χ_b does not change at temperatures below $T_{\rm C}$ due to redistribution of domains.

We analyzed the experimental data starting from the initial values of CFP for DyF₃ (see column 2 in table 3) calculated in the framework of the exchange charge model [5, 15]. Then these values were corrected (column 3 in table 3) to fit the measured susceptibilities χ_a and χ_c at low temperatures.

The free ion ground state, ${}^{6}\text{H}_{15/2}$, is split by the crystal field into eight Kramers doublets, and the gap between the first excited sublevel and the ground doublet exceeds 50 K (see table 4). At liquid helium temperatures most of the Dy³⁺ ions are in the crystal field ground state, and the EPR spectra are described by the projection of the Hamiltonian (1) on the space of wavefunctions $|+\rangle$ and $|-\rangle$ of the ground doublet corresponding to the eigenvalues $\pm 1/2$ of the *z*-component of the effective spin moment S = 1/2. The spin-Hamiltonian of even dysprosium isotopes in YF₃:Dy has the following form:

$$H_{S} = \mu_{\rm B}[B_{x}(g_{xx}S_{x} \pm g_{xz}S_{z}) + B_{y}g_{yy}S_{y} + B_{z}(g_{zz}S_{z} \pm g_{zx}S_{z})],$$
(10)

where the upper and lower signs refer to the Dy³⁺ ions in the magnetically non-equivalent positions. Components of the *g*-tensor are $g_{xx} = 2|\langle +|\mu_x|-\rangle|$, $g_{xz} = 2|\langle +|\mu_x|+\rangle|$, $g_{yy} = 2|\langle +|\mu_y|-\rangle|$, $g_{zz} = 2|\langle +|\mu_z|+\rangle|$, $g_{zx} = 2|\langle +|\mu_z|-\rangle|$.

able 3.	Crystal	field para	meters	$B_{p}^{k}(1)$ (cm	n^{-1}) for	the Dy ³⁺	ions
2—calcu	ilated, 3,	, 5—from	the fitti	ng proced	ure, 4—	-from [5]).

1

р	k	Dy	/F ₃	YF	3
	1	2	3	4	5
2	0	290	304	220	299
2	1	-322	-312	-345	-318
2	2	-225	-224	-190	-215
4	0	10	-131	-104	-202
4	1	639	621	687	635
4	2	-16	-29	68	12
4	3	-59	-62	-102	-83
4	4	146	146	28	180
6	0	0	83	-4.8	10
6	1	421	403	365	342
6	2	-539	-523	-367	-555
6	3	39	43	40	41
6	4	-108	-108	-91	-106
6	5	321	315	221	297
6	6	268	276	308	287

The splitting of the ground doublet in the magnetic field, $\Delta \varepsilon(\mathbf{B}) = g_{\text{eff}} \mu_{\text{B}} B$, is determined by the effective g-factor

$$g_{\text{eff}} = [g_{yy}^2 \cos^2 \theta + \sin^2 \theta (g_c^2 \cos^2 \varphi + g_a^2 \sin^2 \varphi \pm g_{\text{ac}}^2 \sin 2\varphi)]^{1/2}, \qquad (11)$$

where θ is the angle between the field **B** and the y(b)-axis, φ is the angle between the magnetic field projection on the *ac*-plane and the *c*-axis, $g_c^2 = g_{xx}^2 + g_{xz}^2$, $g_a^2 = g_{zz}^2 + g_{zx}^2$, $g_{ac}^2 = |g_{zz}g_{xz} + g_{xx}g_{zx}|$.

The set of CFP for $YF_3:Dy^{3+}$ was obtained earlier in [5] from the analysis of optical absorption and luminescence spectra (column 4 in table 3), but the corresponding gfactors of the ground state disagree with the results of EPR measurements described in the preceding section. However, varying CFP obtained from the analysis of the susceptibilities of DyF_3 (column 3 in table 3), we found the set of CFP (column 5 in table 3) close to the starting values that allowed us to describe satisfactorily spectral properties of the diluted YF₃:Dy³⁺ system as well. The calculated g-tensor components of the Dy³⁺ ground state in DyF₃ and YF₃:Dy are compared with the results of measurements in table 1. Not only have gfactors for YF₃:Dy been fitted, but the calculated crystal field energies of sublevels of the ground ${}^{6}H_{15/2}$ and excited ${}^{6}H_{13/2}$, ${}^{6}\text{H}_{11/2}$, ${}^{4}\text{F}_{9/2}$ multiplets also agree satisfactorily with the results of optical studies [5] (see table 4).

A large value of the g-factor g_b is a prerequisite for a dominant role of the dipole–dipole interactions in the ferromagnetic ordering along the *b*-axis. At low temperatures, the single ion susceptibility can be approximated by the expression $\chi_{yy}^{s}(1) = g_b^2 \mu_B^2 / 4k_B T$, and, from equation (9) with the corresponding lattice sums from table 2 and $J_{ex} =$ 0, we obtain the Curie temperature 3.35 K as compared with the observed $T_C = 2.55$ K (the overestimation of the ordering temperature is the inherent property of the meanfield approximation). The exchange-coupling constant, $J_{ex} =$ -0.067 cm⁻¹ (antiferromagnetic exchange), was adjusted so that the calculated Curie temperature agrees with the observed one.

Table 4.	Crystal field energies E	$_{n}$ (cm ⁻¹) of the Dy ³⁺	⁺ ions in YF ₃ and DyF ₃ .
----------	--------------------------	--	---

	YF ₃		DyF ₃		YF ₃		DyF ₃	
Multiplet	Exp. [5]	Calculated	Calculated	Multiplet	Exp. [5]	Calculated	Calculated	
1	2	3	4	5	6	7	8	
⁶ H _{15/2}	0 37 59 111 150 211 276 502	0 40 49 107 124 211 279 474	0 42 54 103 122 203 273 477	⁶ H _{11/2} ⁴ F _{9/2}	5838 5862 5904 5951 6034 6087 21049	5843 5866 5932 5972 6049 6079 21043 21169	5844 5863 5927 5969 6049 6079 21043	
⁶ H _{13/2}	3491 3546 3568 3586 3658 3762 3830	3491 3560 3577 3597 3654 3753 3801	3489 3560 3574 3595 3653 3753 3801		21155 21188 21267 21297	21169 21206 21279 21317	21168 21206 21277 21317	

The single ion magnetic moments $\mathbf{m}(T)$ at different temperatures in the external magnetic field B = 100 Oe directed along the crystallographic axes were computed using CFPs from column 3 in table 3. Then the bulk susceptibilities were calculated using equations (7) and the corresponding single ion susceptibilities $\chi^{s}_{\alpha\beta}(T) = m_{\alpha}(T)/B_{\beta}$. As seen in figures 1–3, the calculated temperature and angular dependences of the bulk susceptibilities agree satisfactorily with experimental data in the paramagnetic phase ($T > T_{c}$). It follows that variations of CFP with temperature in the range of 0–300 K should be rather small.

The observed behavior of the bulk susceptibilities along the a and c axes at low temperatures $(T < T_{\rm C})$ is the most unexpected result of this work. In the ordered phase, the internal magnetic field along the *b*-axis, B_{in} = $(\sum_{i=1}^{4} Q_{yy}(1,i) + J_{ex}/8\mu_{\rm B}^2)m_0(T)$ (m_0 is the spontaneous magnetic moment of a Dy³⁺ ion, which may be assumed to vary with temperature as $|T_{\rm C} - T|^{\beta}$, $1/3 < \beta < \beta$ 1/2), causes only a small decrease of the susceptibilities in directions normal to the *b*-axis (see the inset in figure 2, dotted curves) due to splitting of the ground doublet of the Dy^{3+} ions. To describe the increasing (χ_a) and decreasing (χ_c) susceptibilities at low temperatures $(T \rightarrow$ 0), we have introduced temperature variations of CFP $\Delta B_p^k(j) = a_{pk}(j)[m_0(T)/m_0(0)]^2$ with amplitudes of about ten wavenumbers (in particular, $a_{20}(1) = 20$, $a_{21}(1) = 18$, $a_{22}(1) = 2.5, a_{40}(1) = -8, a_{44}(1) = 4, a_{60}(1) = 3,$ $a_{61}(1) = -10, a_{65}(1) = -11, a_{66}(1) = -5 \text{ cm}^{-1}),$ which may be induced by the spontaneous magnetostriction. This explanation evidently needs additional theoretical or experimental confirmation; however, the detailed discussion of magnetoelastic effects in the title systems is out of the scope of the present work.

The magnetic moments of the Dy³⁺ ions in the magnetic fields along the *b*-axis at $T > T_{\rm C}$ were obtained from equation (5) by the method of subsequent approximations; the results of calculations agree satisfactorily with the experimental data (see figure 4).

4. Conclusion

The earlier reported [9] ferromagnetic ordering of DyF₃ along the *b*-axis has been confirmed and the main governing mechanism of this ordering has been determined. From the direct magnetization measurements, it follows that the ferromagnetic domains are induced at temperatures below $T_{\rm C} = 2.55$ K due to the magnetic dipole–dipole interactions. The set of CFPs for the Dy^{3+} ions in DyF_3 at the sites with the C_s symmetry has been calculated in the framework of the exchange charge model and corrected to fit the measured susceptibilities, which were analyzed taking into account the classical dipole-dipole and exchange interactions. The constant of the effective antiferromagnetic exchange interaction between the nearest neighbors of -0.067 cm⁻¹ has been evaluated within the mean-field approximation; this value is about three times less than the corresponding energy of the dipole-dipole interaction. According to the results of calculations performed with the obtained set of CFPs and confirmed by the EPR measurements in the YF₃:Dy single crystal, the magnetic moment in the ground state of the Dy^{3+} ions is extremely anisotropic, and the DyF₃ crystal may be considered as a quasi-Ising magnet suitable for studies of phase transitions (destructions of the magnetic order) at temperatures below $T_{\rm C}$ in external magnetic fields normal to the *b*-axis.

Acknowledgments

This work was supported by the Kazan Federal center for physical and chemical measurements. SLK, INK and BZM acknowledge the support by the Ministry of Science and Education of the Russian Federation (project RNP 2.1.1.7348).

References

^[1] Zalkin A and Templeton D H 1953 J. Am. Chem. Soc. 75 2453

- [2] Caspers H H, Rast H E and Fry J L 1967 J. Chem. Phys. 47 4505
- [3] Kuroda H, Shionoja S and Kushida T 1972 J. Phys. Soc. Japan 33 125
- [4] Bumagina L A, Kazakov B N, Malkin B Z and Stolov A L 1977 *Fiz. Tverd. Tela* 19 1073
 Bumagina L A, Kazakov B N, Malkin B Z and Stolov A L 1977
- Sov. Phys.—Solid State **19** 624 (Engl. Transl.) [5] Davidova M P, Kazakov B N and Stolov A L 1978 *Fiz. Tverd*.
- *Tela* **20** 2391 Davidova M P, Kazakov B N and Stolov A L 1978 *Sov.*

Phys.—Solid State 20 1378 (Engl. Transl.)

- [6] Sharma K K, Spedding F H and Blinde D R 1981 Phys. Rev. B 24 82
- [7] Holmes L, Guggenheim H G and Hull G W 1970 Solid State Commun. 8 2005
- [8] Holmes L and Guggenheim H J 1971 J. Physique Coll. 32 501
- [9] Holmes L M, Hulliger F, Guggenheim H G and Maita J P 1974 Phys. Lett. A 50 163

- [10] Bleaney B, Gregg J F, Hill R W, Lazzouni M, Leask M J M and Wells M R 1988 J. Phys. C: Solid State Phys. 21 2721
- [11] Brown P J, Forsyth J B, Hansen P C, Leask M J M, Ward R C C and Wells M R 1990 J. Phys.: Condens. Matter 2 4471
- [12] Leask M J M, Wells M R, Ward R C C, Hayden S M and Jensen J 1994 J. Phys.: Condens. Matter 6 502
- [13] Kramer K, Romstedt H, Gudel H U, Fisher P, Murasik A and Fernandez-Diaz M T 1996 Eur. J. Solid State Inorg. Chem. 33 273
- [14] Hansen P E, Newald R and Guggenheim H G 1978 *Phys. Rev.* B 17 2866
- [15] Malkin B Z 1987 Spectroscopy of Solids Containing Rare-Earth Ions ed A A Kaplyanskii and R M Macfarlane (Amsterdam: Elsevier) pp 13–49
- [16] Bukvetskii B V and Garashina L S 1977 Coord. Chem. 3 1024
- [17] Piotrowski M, Ptasiewicz-Bak H and Murasik A 1979 *Phys. Status Solidi* a **55** K163
- [18] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443